演習問題1 (環論)

演習問題 1-1 集合 $A = \{(a,b) \mid a,b \in \mathbb{R}\}$ に次で演算を定義する.

$$(a,b) + (c,d) \stackrel{\text{def}}{=} (a+c,b+d),$$

 $(a,b) \cdot (c,d) \stackrel{\text{def}}{=} (ac+bd,ad+bc).$

このとき, A は可換環で $0_A = (0,0)$, $1_A = (1,0)$ である.

- (1) Aが分配法則を満たすことを確認せよ.
- (2) (1,0) が A の単位元であることを確認せよ.
- (2) A は整域かどうか判定せよ.
- (3) $(1,a) \in A^{\times}$ となる a の条件を求めよ.

演習問題 1-2 環 A が $x^2=x$ $(\forall x\in A)$ を満たすとき, A は可換環であることを示せ.

演習問題 1-3 $\omega = \frac{1+\sqrt{-3}}{2}$ とし、

$$A = \{ a + b\omega \mid a, b \in \mathbb{Z} \}$$

と置く.

- (1) A は \mathbb{C} の部分環であることを示せ.
- (2) 次の同値を示せ.

$$x \in A^{\times} \iff |x| = 1.$$

(3) A× を求めよ.

演習問題 1-4

- (1) $f(x) = x^7 + x^4 + 1$, $g(x) = x^2 + 2 \in \mathbb{R}[x]$ のとき, f(x) を g(x) で割った余りを求めよ.
- (2) $f(x,y) = y^5 + x^5y + 1$, $g(x,y) = y x^2 \in \mathbb{C}[x,y]$ のとき, y の多項式とみて f(x,y) を g(x,y) で割った余りを求めよ.

copyright ⓒ 大学数学の授業ノート

演習問題 1-5 $f(x,y) \in \mathbb{C}[x,y]$ と変数 t を考える. $f(t^2,t^3)=0$ のとき, f(x,y) は y^2-x^3 で割り 切れることを示せ.

演習問題 1-6 関数 1, $\sin x$, $(\sin x)^2$,..., $(\sin x)^{n-1}$ は \mathbb{R} 上 1 次独立であることを示せ.

演習問題 1-7 $a,b \in \mathbb{C}$ と可換環 $A = \mathbb{C}[x,y]$ の部分集合 $I = \{f(x,y) \mid f(a,b) = 0\}$ を考える.

- (1) I は A のイデアルであることを示せ.
- (2) I = (x a, y b) を示せ.

演習問題 1-8 可換環 A のイデアル I に対して、

$$\sqrt{I} = \{a \in A \mid$$
ある自然数 n が存在して $a^n \in I\}$

と置く.

- (1) \sqrt{I} が A のイデアルであることを示せ.
- (2) \mathbb{Z} において, $\sqrt{(20)} = (10)$ を示せ.

演習問題 1-9 可換環 $A = \{a + b\sqrt{-6} \mid a, b \in \mathbb{Z}\}$ を考える.

- (1) イデアル $I = (5, 2 + \sqrt{-6})$ と $J = (5, 3 + \sqrt{-6})$ に対して $I \cdot J = (5)$ を示せ.
- (2) 集合 $K = \{xa + y(1 + \sqrt{-6}) \mid x, y \in \mathbb{Z}\}$ が A のイデアルになる自然数 a を全て求めよ.